

Lesmahagow High School

National 5 Chemistry: Unit 1

Key Area — Formulae and Equations

Learning Statement								Red	Amber	Green		
The chemical formula of a substance tells us which elements are present and how many of each element we have, e.g. CH_4 , HBr .								0	0	\bigcirc		
The valency method can be used to work out a chemical formula. The valency of an element is how many bonds it can form. Valency is the number of unpaired electrons in the outermost shell.												
Group	1	2	3	4	ŀ	5	6	7	8 (or 0)			
Valency	1	2	3	4	1	3	2	1	0	$ \bigcirc $	$ \bigcirc $	\bigcirc
The valency	method in	volves doing	the f	ollowing	:			. 1				
	Write d element sy	own	rite down Valency below each lement's symbol		Cross	Put in -over Arro	co	ow arrows and incel down if essary to get formula				
	Si	0 3	Si	0	5			5i ₂ O ₄ ↓		0	\bigcirc	\bigcirc
			4	2	4	} 2	?	SiO ₂				
Some chemical names contain a prefix in them, e.g. mono, di, tri, tetra, which tells us how many of the each element we have. This means we can write the formula for these without having to use the valency method.							•	0		\bigcirc		
Compoun	d carbor	n mono xide	carbon di oxide		kide	sulfur tri oxide		carbon tetra chloride				
Formula	ıla CO		CO ₂			5O ₃		CCI ₄				
Meaning	,	mono = 1		di = 2		tri = 3 tetra						
		group ions . und on page	•				ain more	than one elem	nent. A list			
lon	Formula	lon	F	Formula	I	on	Formula	lon	Formula		\bigcirc	\bigcirc
ammonium	NH ₄ ⁺	ethanoate hydrogencarbo		H ₃ COO ⁻	carbonat		CO ₃ ²⁻ CrO ₄ ²⁻	phosphate	PO ₄ 3-)
		hydrogensulfa		ISO ₄	dichrom	ate	Cr ₂ O ₇ ²⁻					
		hydrogensulfit		ISO ₃	sulfate		SO ₄ ²⁻					
		hydroxide nitrate		H ⁻ O ₃ ⁻	sulfite thiosulfa	ite	SO ₃ ²⁻ S ₂ O ₃ ²⁻					
		permanganate		lnO ₄			5203					
The valency	of a aroup	ion is the nu	ımber	value of	f its ch	narge, e.c	ı a. sulfate	' 50₄²⁻ has a v	alency of			
The valency of a group ion is the number value of its charge, e.g. sulfate SO_4^{2-} has a valency of 2 as the charge is 2								\cup	\bigcup	\bigcup		
The ionic formula of an ionic compound is a formula that contains ions, therefore has charges in								charges in			$\overline{\bigcirc}$	
it, e.g. Na^+Cl^- is the ionic formula for sodium chloride.												

Reactions can be described using word and formula (or chemical) equations.						
 Word Equations 						
Describe chemical reactions using words. For example:						
calcium + nitric acid → calcium nitrate + hydrogen						
o Formula (or chemical) Equations						
Describe chemical reactions using the chemical formulae for the substances involved. For example:						
$Ca + HNO_3 \rightarrow Ca(NO_3)_2 + H_2$						
Formula (or chemical) equations can be balanced using the following method.						
Write down correct chemical formula of all reactants before the arrow and all products after the arrow.						
Na + O_2 \longrightarrow Na ₂ O						
There are 2 oxygen atoms on left hand side but only 1 oxygen atom on right hand						
side. As the formula of Na_2O cannot be changed, double the number of Na_2O molecules by adding the number 2 <i>in front</i> of the formula		\bigcirc	\cup			
$Na + O_2 \longrightarrow 2Na_2O$						
There is 1 sodium atom on the LHS but 4 sodium atoms on the RHS. As the formulae						
of Na and Na $_2$ O are set and cannot be changed, we must add the number 4 in front of the Na on the LHS to balance the number of Na atoms						
$4Na + O_2 \longrightarrow 2Na_2O$						
1144 . 02						
Formula Mass						
The formula mass of a substance is the relative atomic masses of all the elements present						
added together. A list of relative atomic masses can be found on page 7 of the data booklet.	\bigcirc	\bigcirc	\bigcirc			
C ₃ H ₈						
$3 \times C = 3 \times 12 = 36$						
$8 \times H = 8 \times 1 = 8$						
Formula mass has no units.						
Gram Formula Mass (GFM)						
The gram formula mass of a substance is the relative atomic masses of all the elements present added together. A list of relative atomic masses can be found on page 7 of the data booklet.						
Ca(OH) ₂						
$1 \times Ca = 1 \times 40 = 40$						
$1 \times Cd = 1 \times 40 = 40$ $2 \times O = 2 \times 16 = 32$)			
$2 \times H = 2 \times 1 = 2$						
The unit of gram formula mass is grams , g .						

The gram formula mass (GFM) of a substance is also known as 1 mole of a substance.						\bigcirc	
1 GFM = 1 mole							
Calculations Involving N	lo. of Moles, Mass and	I GFM					
The number of moles, mass and GFM have the following relationship.							
9	g = no. of grams	mol = no. of moles			0	\bigcirc	
mol gfm	g = mol × gfm						
Calculations Involving No. of Moles, Volume and Concentration							
The number of moles, vo	lume and concentration		·				
mol	mol = no. of moles	c = concentration v = volume (mol/l) (litres)				\bigcirc	
v c	mol = v x c	$c = \frac{mol}{v}$	$v = \frac{mol}{c}$				
N.B. Concentration has the unit mol l^{-1} (moles per litre) this means the volume in this equation must be in litres as well.							
To convert from cm³ to litres, divide by 1000.							
e.g. 45 cm³ = 45/1000 = 0.045 litres							
Worked Example							
Calculations involving concentration and number of grams of solid: e.g. Calculate the concentration of a solution when 5.85g of NaCl is dissolved in 50cm³ water.						\cup	
Calculate the gfm of NaCl no. of mol = $\frac{\text{no. of grams}}{\text{of moles}}$ concentration = $\frac{\text{no. of moles}}{\text{volume}}$							
Na 1 \times 23 = 23							
CI 1 × 35.5 = 3	35.5 ₌	5.85	0.05 litres				
gfm = <u>5</u>		58.5	= 2 mol/l				
= 0.1mol NB Volume must be in litres!							